
Internals of VoRTEX-: The Source Editor*

1 Introduction

John Coker
Computer Science Division,

University of California,
Berkeley, CA 94720

October 4, 1988

v'Q_RLE..\:[2] is a source-based interactive document preparation, system built on the T:&'C

typesetting language[4], which allows some of the functions of direct-manipulation sys­

tems as well. This report describes the editor portion of the prototype system as currently

implemented.
VoRTEX is an interactive system based on T:&X. 'T)y'C allows finer control and produces

higher quality typesetting than the other systems commonly available on UNIX. VoRTEX
makes these features more accessible through integration '\Vith a powerful editor, an

incremental 'T)y'C processor and a what-you-see-is-what-you-get output displayer.

The first version of VoRTE-X is nearly finished and has shown us what problems

our early assumptions and the design have produced. Tllis document describes the

internals of the system from the point of view of the VoJ1J'E..'C source editor (the user

interface). Since v():RfEX is written in three separate pieces, this paper does not describe

the architecture of the entire system. However, it does document most of the interfaces

within the system.
The references at the end of this report can be followed up for more information,

especially the Ph.D. thesis of Pehong Chen[l]. l\Iore information on the internal repre­

senation can be found in [3].

•Sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by Space and Naval

Warfare Systems Command, under Contract ;'\! o. N00039-88-C-0292.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Internals of VORTEX: The Source Editor

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1.1 Some Associations

The system runs under X version 10, and appears to be another of the EMACS[5] family of

visual editors. The command structure and invocation is based on the EMACS paradigm.
The source editing paradigm is also that of EMACS with point (the left edge of the. text

cursor) and mark (an invisible text marker) used to delimit text.
Vo.RIEX is actually implemented as several processes. The one the user starts up

(which is called vortex) implements the source editor. The source editor contains a
Lisp interpreter which is used to invoke the other processes, although this is typically
done by the system when needed. From the user's point of view, he interacts solely
with the source editor since its Lisp interpreter performs all interpretation and executes
commands at the higher levels.

1.2 A Few Words About the Editor

The program vortex is a text editor with a built-in Lisp interpreter which has been

written in C to perform all the user interaction for the VoRfB.X system. It runs only
under X, since is windows (in EMACS terminology) are also X windows. Every different

"locus of editing" is directed through a separate window. In most instances, each window

views a different source file or page of the proof output, although it is quite possible to

edit the same file and view the same page at the same time in different windows.
Our Lisp interpreter, vLisp, has been built into the editor (it kernel is entirely written

in C) and all the editor functions are accessed through the Lisp system. Higher level

editing is done through vLisp functions. The Lisp kernel and most primitive editing

functions are coded in C and almost all of the visible system is built up from these

primitives through vLisp functions.

2 The Editing Paradigm

In order to implement the functionality required, we decided to use an "internal repre­

sentation" which was equivalent neither to the source text of a T£X document nor the
primitive typesetting commands of a dvi file. vVe needed something that could repre­

sent both, and ultimately be mapped back into the T£X source. Hm,vever, due to the
lack of structure of 'T£.:\: source, this was impractical although we did manage to achieve

approximately the same functionality.

2.1 Our Problems with T:EX
The largest problem is that there is very little underlying structure to T:&X. There is a

form of scoping (groups, delimited by { and }). And one can imagine words and symbols

2

the user

X windows

source editor

proof editor formatter

Figure 1: The VoB.TEX System Layout

as children of paragraphs, but the scoping is not bound into the logical structure and

there is no control over side-effects. All control structures and user definitions are done

with macros, which may be changed at any time. In fact, a TvX program may change

the reader syntax conditionally.
Thus, it is not practical to get completely away from the text-based structure. vVe

could not design an internal representation that would allow us to generate correct and

reasonable 'I'EX source from some abstract representation of a document. Thus, in the

implementation, we ended up with an internal representation which is used to map

between the basic representations of the document, the "source" (T:&X code) and the

"proof" (e.g., dvi command).
The terminology used denotes the tree-based internal representation as the IRr and

the source text representation (basically ASCII text) as the IRs and the target represen­

tation (images to print or display) as the IRT. Basically, the "internal representation"

is a tree with the interior nodes representing logical structure (pages, paragraphs and

words) and the leaves pointing to the TEJX source which implements it. The tree also has

links (filled in as necessary) into the IRT at all levels.
Thus, we end with a system which appears as through it has a fundamental repre­

sentation, but is actually a way to map the logical and display elements back into the

source stream. vVe cannot make a change in the proof editor and fi.-..:: up the text, we

must use the IRr to map the change back into the source and then re-format the portion

of the document which has been changed. This then fixes the IRr and IRT.

3

proof editor
IRt (dvi pages)

source editor
IRs (sources)

formatter
IRi (mappings)

Figure 2: Locations of the Internal State

2.2 What We Have Done

vVe make it appear as through the user can edit either in the source using EMACS

commands or on an image of the formatted document using \VYSIVVYG 1-style commands.

The source updates instantly and the representations are kept synchronized. vVhen

editing on the proof, it synchronizes after each editing operation. vVhen editing the

source, merely typing space synchronizes the proof representation.

2.3 Separation of Responsibility

The source editor is responsible for maintaining the most basic representation of the doc­

ument, the 'lEt"'{ program text. Since Vo.RfE.X. operations on the typical UNIX paradigm

(read in files, edit and write them back), the only representation stored externally is the

source text. During its execution the formatter will have a current copy of the source,

its own IRr and information on the IRT. The proof editor will also have it's own cache

of the IRT (page-level granularity) and other command-state and selection information.

The source editor program, vortex, can run with or without the other two processes.

In fact, starting up VorTeX does not automatically start those daemon programs. The

user may explicitly start the formatter with start-formatter or the proof editor with

start-proof-editor or implicitly with format-document or proof-document respec­

tively. make-document starts up the formatter, transmits the entire contents of the T:EX
document (possibly more than one file) and begins treating the source buffer(s) as part

of the WYSIWYG system.

1\VYSIWYG-What You See Is What You Get.

4

Editing in a buffer which is part of the formatted document causes the source editor
to send the changes to the formatter. However, due to the possibility of syntactic in­
consistencies, the formatter will not reorganize the IRI until the user explicitly requests
it with format-document. The command format-document will only send the changed
characters from the document's source buffers and trigger an incremental re-format. The
user is expected to format the document often, whenever he wishes to see the formatted
version. In fact, a version of the system could be built which would request format­
ting every time the user made a change to the source (although we think this would be
prohibitively slow).

To understand the following descriptions one must keep in mind the fact that the
system only truly maintains the source text of the document. The formatter translates
this into the proof version with which Vof{I'B.'(can display the formatted document and
translates what little structure there is in the formatted representation back into the
source text stream.

2.4 The Selection Is the Thing

All proof editing works based on the "current selection." In the EMACS paradigm, the
current region is defined by the point and most recent mark. In the proof editor, the
selection is defined by selecting one or more pieces of the document at some level of
structure. Assuming that these all come from some ordered, contiguous portion of the
source document, the proof selection can be mapped back into the source text as an
EMACS region.

Making a selection in the proof editor, causes it to send the selection back to the
source editor. The proof selection is available to Lisp programs through the command
proof-selected-region, which returns the current proof selection as an EMACS region
(plus the buffer name). The Lisp functions which implement the WYSIWYG commands
use this mechanism to set up the current buffer, point and mark and then use E~'lACS
editing commands to make the change.

The proof selection can also be set from the source editor by translating point and
mark into a list of characters for the proof editor to display. This mechanism is not
used much, but the trivial case, selecting a single character, is very useful for finding
the current position in the other representation (C-x . is bound, in both editors, to a
function which selects the current point in the other editor).

This has the advantage of being easy to extend, since writing a Lisp function is all
that is required, although the lack of any true knowledge of the document makes more
sophisticated transformations impractical.

source editor II Ill

proof editor formatter

Figure 3: The Basic System Triangle

2.5 The Mapping Mechanism

The proof editor maintains a copy of the IRT which associates TEf'"'{ boxes with dvi­

style output primitives. It can paint a window with the glyphs and rules to display the

formatted output and translate the mouse cursor position into a formatter box ID. These

IRr box IDs may represent terminals (characters), called t-boxes, or logical structure

(words, paragraphs and pages), called n-boxes.
Each character in the IRs is tagged with a unique ID which allows the source editor

to translate t-box IDs as sent from the proof editor into source buffer positions which

can be used for editing. Thus, when the proof editor sends the selection as a pair of

t-box IDs, the source editor requests the corresponding buffer/region from the formatter

and sets up the data returned by proof-selected-region.

3 The Three Components

The three basic pieces to the Vo.RTB.X system are the source editor, proof editor and for­

matter. These have been implemented as separate processes which communicate through

Berkeley UNLX TCP /IP, "stream sockets." For the most part, the communications are

asynchronous, without acknowlegements and avoiding the necessity for request/reply

messages. However, there are several places where queries were unavoidable. The source

editor is the program run by the user to invoke the system, it then invokes the processes

which implement the proof editor and formatter as daemons.
Along each of the three communications channels editor, iT_EX-the TEX formatter and

source-the source editor) a constant-length header has been defined and message-specific

data trails the header. Other than the data length parameter in the header, there are

no message boundaries.

6

3.1 The Source Editor

The source editor invokes the proof editor and formatter in response to the commands

start-proof-editor and start-formatter. The formatter is also started, if necessary,

when the user creates a new 'fE.X document with make-document. Similarly, the proof

editor is started automatically by proof-document.

Since vortex can function as an editor with both, one or none of the daemons running,

it does not exit if they do. The user may get rid of the proof editor and formatter

with kill-proof-editor and kill-formatter respectively. However, without the two

daemons, only normal text editing may be done.
Note that all real editing is done in the source editor. The proof editor displays

the formatted output and allows selection on that output, but the system translates all

selections back into the source buffers and is edited there.

All files handled by the system are managed by the source editor. This is necessary

since the method of invocation of the formatter allows it to be run on a different host

machine.

3.2 The Proof Editor

The proof editor appears to be identical to the source editor in terms of paradigm-it's

windows operate as do source buffer windows. Any VoRT:&X buffer window may visit a

proof buffer; the differences between a source and a proof window are all implemented

at the buffer level.
The proof editor commands are implemented as a small set of remote procedure calls

to the proof editor daemon, which is responsible for maintaining the image in the window.

The mode line and window itself is managed by the source editor and all input is filtered

through the key bindings scheme and devolves into Lisp function calls.

3.3 The Formatter

The formatter is not accessible by the user directly. It is responsible for formatting the

document and performing translation functions in both directions, but the user never

needs to interact with it. As with the proof editor, all functionality is implemented

through a set of remote procedure calls.
The top-level structure is the document, which contains a set of files. Every character

in the system belongs to a file and has a unique character ID assigned it by the source

editor. The character ID encodes the file ID within it. Once formatted, that character

has a direct relationship with at-box, the representation of the character in the formatted

page.

-I

When a file needs to be sent to the formatter, the source editor makes sure it exists

in a buffer, marks the buffer as a special T.&X file buffer, and sends the contents of the

file to the formatter. These file transfers are always initiated by the formatter when it

requires a new file. \Vhen the source editor needs to update the contents of a file, the

changes are sent in terms of insert and delete remote procedure calls.
·when a file marked as a T&X file buffer is changed (inserted into or deleted from) the

source editor must send the changes to the formatter before any other processing (using

either of the daemons) is done. Currently, the lowest-level insert and delete commands

in the source editor translate into formatter remote procedure calls immediately. Thus,
formatting occurs during normal text editing, and an explicit request to format the

document may find it already in a consistent state.

4 System Lisp Commands

All low-level control of the two "daemon" process is done through Lisp commands most

of which correspond to the IPC requests described in the next section. Since the source

editor controls the formatter and the proof editor, but does not participate in their
communications (the formatter-proof editor link), we have no Lisp commands which

control that edge of the triangle.

4.1 Proof Editor Commands

The proof editor presents the same paradigm as the source editor-its windows operate

as do source buffer windows. Any Vo:RfEJX buffer window may visit a proof buffer; the
differences between a source and a proof window are all implemented at the buffer level.

The commands listed in this section are the lowest level of all (they generally translate

directly into low-level communications operations). The majority of editing functions are
more complex functions written in vLisp and invoked through key strokes in the normal

EMACS manner.

start-proof-editor

starts up the proof editor on the specified host if necessary and connects to it. The

function returns t if a sucessful connection was made and nil otherwise. If there is a

serious low-level communications failure, an error may occur.
The proof editor is run on the machine given by the value of proof-editor-host by

exec'ing the program given by proof-editor-program on that host ("localhost" by

default).
If the proof editor is already running when tllis function is called, the current proof

editor is killed (as with kill-proof-editor) and a new one is started.

8

kill-proof-editor
kills the proof editor if one is nmning. If a formatter is running, it loses its connection

to the proof editor also.

proof-document
creates a proof window on the given document at the specified physical page number, or

at page one if none is specified.

proof-goto-page
changes the page being viewed in the current window (or the window specified by the

second argument if there is one) to the specified physical page number.

The physical page number has nothing to do with the page number TE:"'< prints on

the bottom of each page, it refers to the order of the pages as laid out in the document.

The first page formatter is page one, the second page two.
If the specified page does not exist, the editor finds the closest possible page. Thus,

both zero and one go to the first page and numbers greater than the length of the

document go to the last page.

proof-next-page
changes the page being viewed in the current window (or the window specified by the

second argument if there is one) forward or backward by the specified count.

proof-move-absolute
moves the current window (or the window specified by the second argument if there is

one) to the given proof editor position. A proof buffer window position is specified in

units of screen pixels. These routines are normally not needed by the user.

proof-move-relative
moves the current window (or the window specified by the second argument if there is

one) in the given proof editor relative to the current position.

proof-select
causes the area under or the current mouse position (it must be invoked interactively)

to be selected at the next higher level of structure.
This function and the other selection functions below, cause VoRTEJ"'< to translate the

selected structure in the proof window into a source buffer/region pair as returned from

proof-selected-region. Proof selections are performed by the proof editor, with the

reverse mapping clone by the source editor upon completion.

proof-select-more
causes the area under the mouse cursor (it must be invoked interactively) and all the text

between it and the current selection (begun with proof-select) to become the current
selection. It always operates at the granularity established by proof-select. Thus,

if the user has clicked the left button twice at the same place (calling proof-select
to select a word), and then moves to another word and clicks the middle button (call­

ing proof-select-more), all words between and including the ones clicked on will be

selected

proof-selected-region
using the proof editor as a list. The first element in the list is the source buffer name (the
general buffer handle) and the other two are offsets into the buffer defining the region,
in order.

If no region has been selected with the proof editor, tlus function returns nil.

proof-moveto
scrolls the specified proof window to the given offset in the buffer. If no buffer and
window are specified, the last used source and proof window buffers are used.

4.2 Formatter Commands

The formatter does not appear to the user directly. It is responsible for formatting the
document and performing translation functions in both directions, but the user never
needs to interact with it. As with the proof editor, all functionality is implemented
through a set of remote procedure calls.

start-formatter
starts up the formatter on the specified host if necessary and connects to it. The function
returns t if a sucessful connection was made and nil otherwise. If there is a serious low­
level communications failure, an error may occur.

The formatter is nm on the machine given by the value of formatter- host by exec'ing
the program given by formatter-program on that host ("localhost" by default). If
we're already connected to the proof editor and a sucessful connection is made to the
formatter, a connection between the formatter and the proof editor is established

kill-formatter
kills the formatter if one is running. If a proof editor is running, it loses its connection
to the formatter also (but doesn't necessarily die itself).

make-document
creates a new document whose master file is that specified by the given T:&X source file.
If the file is not being visited in any buffer, it is visited. Buffers which are visiting TEX
source files are marked as such so that changes to them can be communicated to the
remote T£X formatter. The user will not allowed to kill this buffer until the document
is closed.

The contents of this master file buffer will be scanned by the formatter and processed
as T£X source code. Note that changes to the source buffer are sent to the formatter
program when (or before) the buffer is written or when a format-document command
is invoked.

Since only one document is allowed at a time in the current system, make-document
will implicitly call close-document if there is a current document when it starts. To

10

reformat the current document, use format-document.

If a formatter process is not running when tllis function is called, one is started.

make-document implicitly calls start-formatter in tllis case. See the documentation

on the latter function for more information.
The contents of the buffer are sent immediately. If other files are required (via a

bsl input statement), they will be sent as requested by the formatter.

format-document

sends a message to the incremental 'rEf'\. process to begin reformatting the current doc­

ument. There must be a current document previously opened with make-document.

close-document

closes down the formatter connection, which has the effect of freeing all resources used

by the document.

5 Communications Protocols

Along each edge of the process triangle, a separate communications protocol has been

defined. The source editor-formatter and source editor-proof editor connections are de­

scribed in detail here. Each of the three protocols include a global protocol, which

implements rendezvous and common functionality.
All numbers are transmitted in network byte order. T\vo sizes are used: long (32

bytes) and short (16 bytes) either signed or unsigned. Other data (ASCII strings) is sent

as a byte stream. There are no padding requirements for messages, although we have

been careful to lay out the data within each message to avoid architecture differences so

that the data can be easily read into a C structure or array. Strings are not necessarily

terminated with a NUL character (ASCII 0).
Each packet begins with a constant format header. The eight bytes of header may

make up the entire message. These headers are constant, however the trailing data is

defined by each request.

u_short
u_short
u_long

request
datal en
commdata

the request code
the trailing data length (bytes)
communications specific data

The "communications specific data" is not used in the global protocol, but stores the

window ID and file ID for the proof editor and formatter communications respectively.

These IDs allow the two processes to pass the most common piece of information without

needing to define additional protocol.

11

5.1 Global Protocol

The basic format of all messages and the messages common to all three edges of the

triangle are listed in the include file "gl_comm. h". A copy of this file and the other three

message sets are appended to this report. See those files for a more concise description

of the byte layout of the individual messages.

5.1.1 Process Rendezvous

Each of the two daemon processes needs to connect to the source editor and to each

other. Upon start-up, each daemon examines its argument list to determine how to call

the source editor back. Two non-option arguments are expected, the host name and

internet port number on which the source editor is listening. In addition, the proof

editor takes the X display name as a third argument. (Both programs should also allow

options to be passed in, particularly the -d option for debugging.)

Once a daemon has successfully connected, it should send a VERIFY request on the

new connection. The source editor will respond with a WELCOME or GOAWAY. The VERIFY

packet contains an identifier (a "magic number") and the protocol versions of the global

and specific local communications. Assuming the identifier is correct and the versions

match, a WELCOME is sent with no data, otherwise it responds with a GOAWAY message

and the data contains an error message (text string). Once the WELCOME message has

been received, the daemon is officially connected to the source editor and no more hand­

shaking is necessary.

5.1.2 Connecting the Formatter and Proof Editor

There is one other rendezvous task that must be done; connecting the formatter and

proof editor to one another. The protocol we've implemented to perform this is necessary

because of the possibility of nmning more than one VoRTEX on a single machine; we could

not just assign the internet port numbers.
The protocol used for this rendezvous involves a three step process: 1) the source

editor instructs one daemon to listen for a connection from the other with a LISTENAT

request, 2) the daemon responds with a LISTENING reply when it is ready, and 3) the

source editor instructs the other daemon to connect to the first one with a CONNECT

request.
The LISTENAT request includes an internet port number and a time-out value. How­

ever, the port number it specifies need not be the one used by the daemon. It must

attempt to bind internet ports starting with the number specified and incrementing until

the operation succeeds (or fails with some error other than "port already in use"). Once

it has successfully bound the port, it returns the port number to the source editor and

waits for at most the given time-out for a connection from the other daemon.

12

Once the two daemons have established the TCP /IP connection, all of the system is in

proper communication. vVhenever the second of the two daemons successfully connects

back to it, the source editor attempts to establish a connection between the daemons as

described above. 2

5.1.3 Error Handling

There are two main jobs involved in error handling; reporting and re-synchronization.

The first is obvious, but the second requires some throughout. Since we've implemented

the Vol{[E.X. protocol on TCP /IP streams (which have no message boundaries), we need
some method of marking the stream for re-synchronization.

This resynchronization is done with the "out of band data" facility of UNIX sockets.

The FLUSH request sets a mark (using an out of band character) and the receiver flushes

all bytes up to that mark. In practice it has not happened that the programs lost their

position in the byte stream (since the headers are regular), but it may be necessary at

some time in the future.
There is an additional request, ERROR, which sends an ASCII error message destined

for the user. These requests are really only used to send errors back to the user to be

displayed by the source editor. ERROR is a request just like any other and does not imply

FLUSH or ABORT.
There are two messages which terminate the connections (and the daemon processes

when sent from the source editor). QUIT signals termination (usually due to a user

command) of a daemon and ABORT is considered an error termination. Both have the

same semantics (no trailing data) and are handled the same way by the current source

editor. vVhen sent from the source editor, they command the specified daemon to quit

and when sent from a daemon, signal that the daemon is quitting. The daemons cannot

command the source editor to terminate.

5.2 Proof/Source Protocol

The Lisp functions which implement proof editor functionality are all executed by the

source editor and presumably result in calls to the lowest-level proof operations. In

addition to these, there are many implicit operations which are not visible to the user

such as create window, expose window and destroy windo·w.3 See the include source file

"ps_comm. h" for the exact format of all the proof editor procedure calls.
In all proof/source requests which require one, the window ID of the proof window

in question is passed in the commdata field of the message header (bytes 4 through 8).

The ID passed is actually the X window ID of the proof window (which corresponds to

2The Lisp programmer may also explicitly establish the connection with make-connection.
3These implicit requests mirror the X version 10 window management paradigm.

13

a proof window and buffer for the source editor). For all requests other than CREATE

any system of unique identifiers would have sufficed, but we chose the X window ID for

converuence.

5.2.1 Window Management

The first of the requests in this link of the system implement window management func­

tions. The most obvious place to start is window creation. The request CREATE sends the

information on a newly made X window which the source editor is using to display the

particular buffer. The window has already been created and mapped and this request

includes an implicit EXPOSE of its entire surface.

u_short
u_short
u_short
u_short
u_long
u_long
u_long
u_long
u_long
u_long

Xoffset
Yoffset
width
height
fg_pixel
fg_pixmap
bg_pixel
bg_pixmap
hl_pixel
hl_pixmap

X offset on window
Y offset on window
width of valid portion of window
height of valid portion of window
pixel value of foreground
tile for foreground
pixel value of background
tile for background
pixel value for high-light
tile for high-lighting

The first four arguments define the region on the X window which is owned by the

proof editor. The region (X, Y to X+width, Y +height) is the only area on the X window

which may be painted by the proof editor. The proof editor is not allowed to change

the window in any way other than repainting its designated region. It may not even use

XClear to erase the window since the title bar is drawn on the same X window by the

source editor.
The last six arguments are used as the X color handles (more IDs) for painting.

These are specified individually for each window since it may be useful for different

proof windows to have different colors schemes. The comments given after the element

definitions should be enough explanation to the X programmer.

The obvious accompaniment to create is DESTROY, which is sent with no trailing data.

A window may only be destroyed by the source editor and no X access may be made

to the window after the request has been sent (and the editor once more reaches the

top level). All proof editor data structures used for this window should be discarded

although cached page data should be expired by some other means for efficiency when

the user opens another window.

14

The two remaining functions for window management are RESIZE and EXPOSE. These
both pass a rectangle although the rectangle has different meanings in each. The rectangle
in RESIZE is just like that in CREATE; it re-defines the drawing area on a particular window.
For EXPOSE the rectangle is offset from the offset specified by the most recent RESIZE or
the CREATE (e.g., an EXPOSE of the entire window would result in 0, 0 for the exposed
area's origin). The area should always be within the defined drawing area.

5.2.2 Operation Batching

A less important enhancement to the protocol is the notion of hatching requests. The
source editor will surround a set of requests which form a single user command with
a BSTART/BEND pair. This allows the proof editor to maintain state about flushing the
X output queue or improving the "feel" of the system by making the single conceptual
operation appear to occur all at once.

These hatching groups may nest (for the sake of generality) although groups deeper
than one level will have the same significance as one. The current source editor never
uses more than one group at a time.

Each batch level applies to the -..vindow specified in the packet header only, although
in the current implementation no other messages will appear during the batch grouping.

5.2.3 Document Commands

Each window has a notion of the current document (as well as page and position) and
the request DOCUMENT requests that a different document be displayed in the specified
\vindow. The proof editor then uses the document ID given as the trailing data to query
the formatter for the page's formatted version.

The proof editor implicitly displays the document, displaying the upper-left hand
corner of the first (physical) page. In the current VoRT£.\:., the formatter can only handle
one document, so any instance of the proof editor -..vill always be called with a single
document ID for all windows. As soon as the global document information has been
successfully gotten from the formatter, the proof editor must send the source editor a
DOCPAGES request to inform it of the number of formatted pages in the document.

The source editor requests to move between pages fall into two major categories:
physical and logical page specification. Physical pages are those established by the order
in which TEX writes pages into a dvi file. To move between physical pages in a document,
two requests are used: GOTOABS and GOTOREL. GOTOABS takes the physical page number
and moves to that page, numbered from one through the number of printed pages.
GOTOREL just moves forward the specified number or pages (negative numbers move
backward).

Logical page specifications are defined by the numbers stored into the ten \count

15

registers. The \countO register is used to store the number to be printed at the bottom
of the page (\pageno is a synonym for \countO). The other count registers are used
by various macro packages for other formatting counters. Since there are ten count
registers, a logical page specification may have as many as 10 components, which match
the numbers in the \counts explicitly (as a number or range) or implicitly by being
omitted. See the user document for the exact format of this page specification (the source
editor never needs to generate these specifications itself-they always come from the user
directly). The LOGICAL request passes a string to the proof editor for interpretation.

The other layer of movement commands are those to move the page being displayed
in the window under the visible portion of the editor \vindow. There are two of these
commands: MOVEABS and MOVEREL. Both commands take an X andY distance in pixels
and cause motion of the specified amount (for MOVEREL, negative X andY mean left and
up respectively).

There is one last positioning command, although currently it is the only one of a one of
a number of similar function. The POSITION request specifies an n-box in the document
being displayed and merely instructs the proof editor to "make that box visible." This
usually entails moving to another page or moving on the current page, but is a very
unstructured command and is one of the major places where the proof editor defines the
feel of the system.

5.2.4 Manipulating the Proof Selection

"The proof selection" is a concept which has a simple meaning to the user and a complex
one within the system. In general, such a selection is a list of n-boxes which happen to
make up some logical piece of structure on the page. However, in the current implemen­
tation, the current selection is a range of characters in the source buffer which limits it
to contiguous pieces of text which do not overlap document structure (letters, words and
paragraphs).

The selection is established (or re-established) with the SELECT request from the
source editor. The source editor specifies the position of the mouse cursor and the proof
editor must decide what piece of the document this signifies. To define a (new) selection,
the X and Y position of the mouse within the drawing area of the window is sent. To
un-define the selection a SELECT with no trailing data is sent.

Once a selection has been defined, it may be expanded in two ways, either by moving
to a higher level of document structure or by selecting a range of objects at the current
level. vVhen the proof editor receives a SELECT at the same mouse position as the last, it
moves up a level (from a character to a word to a paragraph). vVhen the mouse position
changes, a new selection is made, starting again at the character level. Expanding a
selection which involves more structure at the same level as the current selection is done
by sending a SELECTMORE request with a new mouse position. All the pieces of structure

16

from the old selection through the unit defined by the new mouse position become the
current selection.

vVhenever a selection is established or expanded, the proof editor must return the
first and last character in the selection using a SELECTION request, with the first and last
t-box IDs as the trailing data. If there was an error, or the selection is undefined for
some reason, a SELECTION request with no trailing data is returned.

5.3 Formatter /Source Protocol

The Lisp functions which implement formatter commands are executed by the source edi­
tor and result in remote procedure calls to the formatter. See the include file "ts_comm. h"

for the exact format of the formatter remote procedure calls.
In all formatter/source requests which require one, the file ID of the affected source

file is passed in the commdata field of the message header (bytes 4 through 8). The ID
passed is constructed by the source editor and can only range from 1 to 127. These
file IDs are assigned by the source editor at the time a TE-X buffer is first dealt with and
the file ID is encoded into each character ID it contains.

5.3.1 Document Handling

Currently, the VoJll'E'X formatter can only handle one document, so the source editor
closes down the formatter connection when a document is closed and creates a new one
when a new document is created. Because of this, there is no explicit request to create
a new document. The first FORMAT request contains an implicit document creation com­
mand. The FORMAT request contains the name of the master file (and the corresponding
file ID in the packet header). Tllis establishes the correspondence between the master or
root file of the document and its file ID.

\Vhen the source editor creates a new document, it justs asks the formatter to format
the document. The formatter then queries for the contents of the file with a TEXINPUT

request, which specifies the file name in the trailing data. A TEXINPUT is also sent when
the formatter encounters an \input command in the 'TEX source. Assuming the file can
be found, the source editor replies with a OPENFILE request which contains the contents
of the source file.

The file IDs and character IDs within those files are assigned by the source editor at
the time the file is loaded into the system. Each character is represented by four bytes
(the character ID) internally. This code contains the file ID, the character code and a
"unique number" for that character code over all files.

In the present system, the source editor is the only piece that directly changes the
contents of the document. This is clone (as the user edits a buffer) by sending INSERT and
DELETE requests to the formatter. The DELETE request just specifies a range of characters

17

(in the source buffer) to be deleted. The INSERT request passes a position and a list of
characters to be inserted before that position.

5.3.2 The Mapping Facility

The source editor is constantly translating box IDs and buffer/offset values to perform
the mapping functions. These requests are implemented as the only two cases of a
more general facility, EXECUTE. An EXECUTE request specifies a sub-request code and any
trailing data it requires and expects to receive a RETURN reply. The RETURN contains
the results of the EXECUTE or no data at all on error. The two functions used for the
mapping are .TGT2SRC and SRC2TGT. The "source" representation of a character is the
file ID and offset within that file. The "target" representation is the t-box ID used in
the formatter/proof editor communications. 4

To implement the function "scroll proof window to point," the source editor queries
the formatter for the t-box which corresponds to the text cursor in the source (using
SRC2TGT) and issues a POSITION command to the proof editor with the resulting box ID.

To implement the proof selection in terms of the source editor model, the first and
last t-box IDs are translated into source buffer positions (using TGT2SRC). Assuming the
files are the same and the positions in order, it can then assign the current point and
mark to the region defined by the proof selection.

6 Restrictions and Assumptions

The packet header contains just enough information to allow the serialization and dese­
rialization routines to be independent of the code which calls or handles the individual
requests. Each request specifies the format of the data (if any) individually.

Since there is only one message length in the header, we never use more than one
variable length field, although it would still be possible to do so (with a second length in
the data or a terminator convention). Variable length data is avoided whenever possible.

The programs assume that the packet header is written in one unit (one call to write)
and may fail if the header is written in pieces. Thus, the header should be written out as
one chunk and the data in whatever form is most appropriate. The source editor always
writes the header in one system call and the data in another (always two calls to write
if the packet contains data). (This could also be achieved with the single system call
writev.)

4This is not the same as the character ID assigned by the source editor.

18

References

[1] Pehong Chen. A Multiple Representation Paradigm for Document Development. PhD

thesis, 1988.

[2] Pehong Chen, John L. Coker, Michael A. Harrison, Jeffrey W. McCarrell, and

Steven J. Procter. The VoRTE-X document preparation environment. pages 32-24,

June 19-21 1986.

[3] Pehong Chen and Michael A. Harrison. Integrating noninteractive document proces­

sors into an interactive environment. Technical Report 87/349, April1987. Submit­

ted for publication.

[4] Donald E. Knuth. The TEJX Book. 1984. Reprinted as Vol. A of Computers €3

Typesetting, 1986.

[5] Richard M. Stallman. EMACS: The extensible, customizable self-documenting dis­

play editor. pages 147-156, June 8-10 1981. A somewhat extended version appears

in Interactive Programming Environments, Barstow et al. (eds.), McGraw-Hill Book

Company, 1984, pp. 300-325.

19

